When should I transfuse platelets and plasma for children?

Dr Liz Chalmers
Consultant Paediatric Haematologist
Royal Hospital for Children
Glasgow

Birmingham Feb 2017
When should I transfuse platelets and plasma in children?

1. Platelet Transfusion in children:
 - Background
 - Evidence & uncertainties
 - Recommendations

2. FFP use in neonates & children:
 - Background
 - Evidence & uncertainties
 - Recommendations
Platelet use in the UK

• Increasing use of a scarce resource
 – 25% increase between 2007/8 - 2014/15 (England – all ages)

• Paediatric clinical settings
 – Haematology-oncology, cardiac surgery, PICU

• Therapeutic vs Prophylactic use
 – Prophylaxis : 60%

• Efficacy
 – Historical & more recent evidence of benefit
 – Optimal use not well defined
 • Prophylaxis strategies, Thresholds, Doses

• Safety - consequences of inappropriate use
 – Adverse reactions, platelet refractoriness, blood product exposure
Platelet Support: Evidence

• Evidence base limited:
 – Significant extrapolation from adult studies
 – Consensus opinion

• Recent systematic reviews & other studies –
 – Prophylactic vs transfusion only strategies - support prophylaxis
 – Thresholds - may vary between individuals & disease groups
 – Platelet dose – lower dose may be as effective but may require more frequent transfusion

Birmingham Feb 2017
Platelet Support: Evidence

- **PLADO study (post hoc paediatric subgroup)**
 - Children (n=198) with treatment induced hypoproliferative thrombocytopenia
 - Daily haemostatic assessment

<table>
<thead>
<tr>
<th>Age range</th>
<th>≥ Grade 2 bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 0-5 yrs</td>
<td>86%</td>
</tr>
<tr>
<td>Child 6-12 yrs</td>
<td>88%</td>
</tr>
<tr>
<td>Child 13-18 yrs</td>
<td>77%</td>
</tr>
<tr>
<td>Adult</td>
<td>67%</td>
</tr>
</tbody>
</table>

- Higher risk of bleeding in children vs adults
- More days with ≥ Grade 2 bleeding
- Risk highest in the autologous HSCT group
- Bleeding occurred at a range of counts

Josephson, Blood 2012
Platelet Thresholds: Survey of Practice in ALL 2014

What is your usual threshold for platelet transfusion in the following groups of children/adolescents with ALL?

<table>
<thead>
<tr>
<th></th>
<th>10×10^9</th>
<th>20×10^9</th>
<th>30×10^9</th>
<th>50×10^9</th>
<th>$70-80 \times 10^9$</th>
<th>100×10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well patient</td>
<td>88.9%</td>
<td>11.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Febrile patient</td>
<td>15.8%</td>
<td>84.2%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Patient with bleeding</td>
<td>0.0%</td>
<td>0.0%</td>
<td>16.7%</td>
<td>66.7%</td>
<td>11.1%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Prior to LP</td>
<td>5.3%</td>
<td>10.5%</td>
<td>26.3%</td>
<td>52.6%</td>
<td>5.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Prior to CVL Insertion</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>52.6%</td>
<td>36.8%</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

Birmingham Feb 2017
Platelet Support: Evidence

- Well patient with no bleeding
- Adults & adolescents with AML
- Threshold of 20×10^9 vs 10×10^9

Supported by Cochrane Systematic Review 2015 – low quality evidence
Platelet Support: Evidence Prior to LPs

- Cochrane review 2016
 - No evidence from RCTs to determine the correct threshold
 - Would likely require a very large study
- Cohort study data support safety of lower thresholds
- van Veen BJH 2010 Review concluded platelet count of 40 x10^9 was safe for LPs
- Howard et al JAMA 2000
 - 941 LPs in Children with ALL
 - Variable platelet counts – majority: 21-50 x10^9/l
 - No serious bleeding events
 - CI calculated for different thresholds
Platelet Support: Evidence Prior to CVL Insertion

- Cochrane review 2010
 - No RCT evidence on platelet support or thresholds pre CVL insertion
- Most guidelines recommend a platelet count of 50x10^9/l

- Zeidler et al 2011
 - Adult study n= 193
 - 604 CVL placements
 - Un-tunnelled CVL

<table>
<thead>
<tr>
<th>Platelet count (x10^9)</th>
<th>OR</th>
<th>95% CI</th>
<th>(p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>2.88</td>
<td>1.23-6.75</td>
<td>(0.015) *</td>
</tr>
<tr>
<td>20-49</td>
<td>1.27</td>
<td>0.77-2.18</td>
<td>(0.38)</td>
</tr>
<tr>
<td>50-99</td>
<td>1.60</td>
<td>0.98-2.63</td>
<td>(0.062)</td>
</tr>
<tr>
<td>>100</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* Significant bleeding only in those with platelets < 20

Zeidler K, Transfusion 2011
<table>
<thead>
<tr>
<th>Platelet count (x 10^9/l)</th>
<th>Clinical situation to trigger platelet transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>Irrespective of other issues (excluding ITP, TTP/HUS, HIT)</td>
</tr>
<tr>
<td>< 20</td>
<td>Severe mucositis</td>
</tr>
<tr>
<td></td>
<td>Sepsis</td>
</tr>
<tr>
<td></td>
<td>Laboratory evidence of DIC in the absence of bleeding*</td>
</tr>
<tr>
<td></td>
<td>Anticoagulant therapy</td>
</tr>
<tr>
<td></td>
<td>Risk of bleeding due to a local tumour infiltration</td>
</tr>
<tr>
<td></td>
<td>Insertion of a non-tunnelled central venous line</td>
</tr>
<tr>
<td>< 40</td>
<td>Prior to lumbar puncture**</td>
</tr>
<tr>
<td>< 50</td>
<td>Moderate haemorrhage (e.g. gastrointestinal bleeding) including bleeding in association with DIC</td>
</tr>
<tr>
<td></td>
<td>Surgery, unless minor (except at critical sites)</td>
</tr>
<tr>
<td></td>
<td>-including tunnelled central venous line insertion</td>
</tr>
<tr>
<td>< 75 - 100</td>
<td>Major haemorrhage or significant post-operative bleeding (e.g. post cardiac surgery)</td>
</tr>
<tr>
<td></td>
<td>Surgery at critical sites: central nervous system including eyes</td>
</tr>
</tbody>
</table>

Birmingham Feb 2017
FFP use in neonates & children

• FFP use static or increasing
 – 4% increase in use documented in UK audit (*Stanworth 2011*)

• Evidence base for FFP currently inadequate
 – Lack of supporting evidence for many indications
 – Variations in clinical practice
 • Range of FFP use 0.99 – 5.84% (*Puettz, 2012*)
 – Data suggest some use likely ineffective/inappropriate
CONCLUSION: Combined with the 2004 review, 80 RCTs have investigated FP with no consistent evidence of significant benefit for prophylactic and therapeutic use across a range of indications evaluated.
UK Paediatric and neonatal FFP transfusions

FFP National Comparative Audit 2009

Age ranges:
- 4635 - 16+
- 114 - 1-15 yrs
- 220 < 1 yr

EASTR study, 2016

- 9% of FFP recipients paediatric (<16 yrs)
- 63% of paediatric FFP recipients < 1yr of age

Stanworth et al, *Transfusion* 2011

Birmingham Feb 2017

[Graph showing age distribution of FFP recipients]

Main reason for transfusion in Children (1 – 15 yrs old)

- Bleeding:
- Before or during invasive procedure or surgery with abnormal coagulation:
- Abnormal coagulation with no bleeding:
- Other:
- Not known

FFP National Comparative Audit 2009
Age ranges: 16yrs+ (4635) 1-15 yrs (114) < 1 yr (220; 4%)
Main reason for transfusion in Infants (< 1 yr old, n=220)

- Bleeding
- Before or during invasive procedure/surgery with abnormal coagulation
- Abnormal coagulation no bleeding
- Other
- Not known

FFP National Comparative Audit 2009

Birmingham Feb 2017
Indications and Effects of Plasma Transfusions in Critically Ill Children

Oliver Karam1,2, Pierre Demare3, Alison Shefler4, Stéphane Leteurtre2,5, Philip C. Spinella6, Simon J. Stanworth7, Marisa Tucci8; on behalf of the Canadian Critical Care Trials Group (CCCTG), Pediatric Acute Lung Injury and Sepsis Investigators (PALISI), BloodNet, and the PlasmaTV Investigators*

Primary indication for plasma transfusion

- Critical bleeding: 34%
- Minor bleeding: 22%
- Preparation: 21%
- Post-op risk of bleeding: 11%
- No bleeding, no procedure: 12%

\textit{n = 443}
FFP Use in infants: UK National Comparative Audit 2011

- Median INR pre FFP
 - Children with bleeding: 1.5 (1.2-1.9)
 - Children with no bleeding: 1.6 (1.2-1.8)

- Is this predictive of bleeding?

Coagulation Screening – PT & APTT
- Initially developed as tests for patients with a high pretest probability of coagulation factor deficiency

- PT/APTT became screening tool to predict bleeding risk in a variety of clinical situations
Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review

Volume 45, September 2005 TRANSFUSION 1413

Jodi B. Segal and Walter H. Dzik on behalf of the Transfusion Medicine/Hemostasis Clinical Trials Network

Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities

Volume 46, August 2006 TRANSFUSION 1279

Omar I. Abdel-Wahab, Brian Healy, and Walter H. Dzik

• Pre-transfusion INR 1.1 – 1.85
 • Normalisation of PT/INR: 0.8%
 • Reduction in INR (50%): 15%
 • Median decrease in INR: 0.2 sec

Birmingham Feb 2017
PT/INR

Stanworth S et al. Transfusion 2011; 51: 62-70

Birmingham Feb 2017
Neonatal Haemostasis

Defining abnormal coagulation in neonates

<table>
<thead>
<tr>
<th>AGE</th>
<th>I, V, VIII/vWF</th>
<th>Vitamin K-dependent factors (U/ml)</th>
<th>Contact factors (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>V</td>
<td>VIII</td>
</tr>
<tr>
<td>ADULT</td>
<td>3.40</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Term (37-41 WEEKS)</td>
<td>2.40</td>
<td>1.00</td>
<td>1.50</td>
</tr>
</tbody>
</table>

- Coagulation parameters are affected by gestational/postnatal age
- Physiological prolongation of PT and APTT in neonates
- Age adjusted normal ranges
- Problems of defining normal ranges and interpreting results

Andrew, 1988
Preterm normal ranges

<table>
<thead>
<tr>
<th>Test</th>
<th>Day 1</th>
<th>Day 5</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT (secs)</td>
<td>13.0 (10.6-16.2)</td>
<td>12.5 (10.0-15.3)</td>
<td>11.8 (10.0-13.6)</td>
</tr>
<tr>
<td>APTT (secs)</td>
<td>53.6 (27.5-79.4)</td>
<td>50.5 (26.9-74.1)</td>
<td>44.7 (26.9-62.5)</td>
</tr>
<tr>
<td>Fibrinogen (g/l)</td>
<td>2.43 (1.50-3.73)</td>
<td>2.80 (1.60-4.18)</td>
<td>2.54 (1.50-4.14)</td>
</tr>
</tbody>
</table>

Figures for healthy preterm infants (30-36 weeks gestation) during the first month of life.

Data from M. Andrews et al, 1988, 1990. All infants had had vitamin k
BSH recommendations - neonates

• FFP may be of benefit in neonates with clinically significant bleeding (including massive blood loss) or prior to invasive procedures with a risk of significant bleeding, and who have an abnormal coagulation profile
 – PT/APTT significantly above the normal gestational and postnatal age-related reference range (taking into account local reference ranges where available) (2C)

• There is no evidence to support the routine use of FFP to try to correct abnormalities of the coagulation screen alone in non-bleeding neonates (1C)

• FFP should not be used for simple volume replacement or routinely for prevention of IVH (1B).
BSH recommendations – Children

- FFP may be beneficial in children with DIC who have a significant coagulopathy (PT/APTT >1.5 times the mid-point of the normal range or fibrinogen <1g/l) associated with clinically significant bleeding or prior to invasive procedures.
- Early use of FFP is also recommended in the management of major haemorrhage.
- FFP should not be administered to non-bleeding children with minor prolongation of the PT/APTT (including prior to surgery unless to critical sites).
- Other specific indications: TTP; coagulation deficiencies; vitamin K deficiency bleeding.

Birmingham Feb 2017
Platelet & FFP transfusions in Children: Conclusions

• Optimal strategies for platelet use in children remain to be defined – thresholds recommended for treatment & prophylaxis
 – Thresholds largely unchanged from previous guideline

• Doubt exists on the efficacy of FFP in a range of settings & there is evidence to suggest inappropriate
 – Extensive use in non-bleeding children with abnormal coagulation
 – Poor predictive value of PT/APTT to predict bleeding
 – Problems defining abnormal coagulation in neonates
 – Limited correction of abnormal parameters by FFP

• Likely that more restrictive use would be appropriate

• Clear need for ongoing research